Close Combat: Swordsman

Documentation

(Unreal Engine 4 asset)

https://www.unrealengine.com/marketplace/close-combat-swordsman

Video overview of the project

Documentation written by the project author ZzGERTzZ.

Manual version : 1.0

https://www.unrealengine.com/marketplace/close-combat-swordsman
https://www.youtube.com/watch?v=XthCAADyuQ4

1. Introduction:

The Project Close Combat: Swordsman is created to provide developers with a
template for games of different genres : action games, RPG’s, slashers or fighting
games. The template includes a combat system, a system for character movement,
a system for managing character’s level up, and a system of skills for a character.

The package includes the following elements of gameplay:

Movement. Basic movement with a procedural lean of the character is implemented
to use fewer animations while feeling the character's response to the change of
direction during the movement. There is a jumping system, as well as a system for
movement in running and walking states. A combat system is also available, where it
is possible to walk in a fighting stance in all directions, while making dashes or
dodging an attack, etc ...

Health component. This component comprises all parameters of character’s health.
It can be used not only with the character, but with any actor, which might need the
health parameters. For example, a turret, which must receive damage when being
hit. The component also has a system for health regeneration, which might be useful
when a constant health regeneration is required.

Melee Weapon. The class of melee weapon for close quarter combat comprises the
visual representation for the weapon, settings for the weapon damage, and types of
strikes. In the project, there are 3 different swords stylized differently: Futuristic
sword, Sword of Light, Sword of Darkness.

Al. Basic Artificial Intelligence is capable of hearing, seeing, following, and attacking
the player from short range. The Al can dodge attacks, maneuver during a fight,
block attacks, etc ... Also patrolling over a game level is available. There is a
convenient and easy way to customize the character’s behavior in a combat, which
can be modified dynamically.

Also, in the project, there is a turret, which can fight at long range.

XP management component. The component comprises all necessary logic to
handle leveling up of a character. It also has all necessary elements for a system of
skills such as the cool-down time (time interval for the skill recovery), active and
passive togglable skill types.

Game Interface (HUD). There is a fully animated game interface comprising HUD
elements like elements of health of both character and enemies, indicator of the
character level and experience points (XP points), elements of visual representation
of character skills.

Combat overview. A cinematic camera in combat.

2. Basic movement

The character movement is based on the basic class for moving from “Epic games”
character movement. This is why adjust all the parameters of movement in this
component. The character can move in any direction and do jumps.

The Pawn animation is passed to Anim Blueprint via Interfaces

e cearch Folders ONRESIECR <oaich Interfaces
: —

U @ Enemy B . haracterXP_ HealthOwner Target_
U Il Hud nterface Interface Interface
[B

It has been done so to avoid binding the character's pawn to a particular Anim
Blueprint. In future, this should simplify integration of other characters, which share
the same skeleton. After the integration of the character, you can use the direct
reference to Anim Blueprint via “cast to” or by adding functions to the interface
“‘“AnimBP_Interface”.

Let’s consider jumping to illustrate this with an example. Several calculations are
being executed once you press the button for jumping (can the character jump at this
moment?).

If the character starts jumping, we call the
interface message “Set Jump” (it is a function,
which we have created in AnimBP_Interface
beforehand) to call the necessary event in
Anim Blueprint, which activates the character
animation and sets it in the state of jumping.

" set Jump

»

P —— Target
1'% AnimBP arge

Is Jum
Anim BP ump (A

All events of interface AnimBP_Interface in Anim Blueprint are located here:

Wy B LTET d I JJIJ_,U
Fhddven~ BT © - : g
> Event Set Jump 4

[

Is Jump Is Jump

You must add the interface in “Class settings” before you can call its events.

CIEEEBERIMnE] Cla:

aF Anim Slot Manager
Search
I Class Options
[» Optimization
4 Interfaces

4 |mplemented Interfaces

Anim BP Interface

4 |nherited Interfaces

Mo Interfaces

As far as the logic of character movement is concerned, it is based on dynamic
changes of parameters of class component “character movement” from “Epic
Games”. For example, when transitioning from running into walking, the top speed is
changed by pressing the button for walking (ALT by default).

B Inputs

»

Max Walk Speed @@ ———— @+ Max Walk Speed

SET

Rotation Rate @ ——— Target

" Character Movement

The character animation in Anim Blueprint is changed based on the character speed.

This is how the character animation and movement are interconnected within the
package “Close Combat: Swordsman”.

3. Health component :

Health component is for the unified system of assigning health parameters to any
actor.

This is how it works:

When you attach the component to an actor, you pass information into the
component about actor's damage (any damage). In its turn, the component
computes health and, at particular settings, restores health or calls for Event Death
in case there is no health left anymore. Event Death is passed via Interface to the
actor, to which this component is related.

How to use health component:
Let’s consider an example of how to use health component.

1. Create an empty actor. Click RIGHT MOUSE BUTTON inside the content browser
and choose Blueprint Class.

u Pick Parent Class

4 Common C

Actor is the base class for an Object that can be placed or spawned in a level.
Actors may contain a collection of ActorComponents, which can be used to control how actors move, how they are rendered, etc.
The other main function of an Actor is the replication of properties and function calls across the network during play.

@see https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/
([@see UActorComponent

hold (Ctrl + Alt) for more

2. In this example, add a cube into our actor. It acts as a visual IR
representation of our actor.

3. Since health component has the unified system, it passes
events via interfaces. At first, add an interface of health component to our actor. To
do this, go to class settings and add interface “HealthOwner_Interface”.

4 Imterfaces

>> 4 |mplemented Interf

Health Owner Interface

4. Add health component to our actor.

4+ Add Component ~

Search Components

® BP Character

Camera
€ EP Health Comp

5. Customize our health component. To do this, select health component
“‘BP_Health_Comp”. Then its settings will appear in tab “Details”.

-=. Components

4 Add Component ~
@ TestActor(self) b Variable

[S its
DefaultSceneRoot Siiiais

i BP_Health_Comp 4 Health

Max Health
Health
Health Recovery Value

Health Recovery Time

Parameters:

Max Health is the maximum amount of health.

Health is a current value of health.

Health_Recovery Value determines the value of health till which the regeneration of
health will continue. At zero value, the health regeneration will be on until the full
health is restored.

Health_Recovery_Time is the amount of time it takes for health to regenerate. There
will be no regeneration at zero value.

6. Pass the information from the damage nodes to health component. In order to do
so, call event from component Damage when the actor takes damage.

Eb S s 4 "¢ Damage
<> Event AnyDamage Target is B
» — »

Damage @ . " BP Health Comp | Target

™
Damage Type s —_————————— @& Damage

Instigated By | Damage Causer

Damage Causer

7. The final step is to call Event Death. Add the event of Interface “Death” in the
event graph. This event triggers your custom death logic. For our test actor, | have
added Set Simulate Physics to our cube.

'{;:. Event Death

»

Damage Causer Target

Simulate 9

Now you may drag into the scene our actor Cube, and after several strikes
(depending on how much health you have set), the cube will become a physical
object, and it will fall.

4. Melee Weapon :

The weapon in the project is also a class component. You add it to the character with
the help of the node add component. This component contains information about the
weapon model, the rate of strikes and damage caused.

How it works: When you press the button to strike and all conditions are met (the
character is not in the air, not dead, etc ...), the character talks to the component and
receives an animation of the strike from it, the animation speed (the speed of the
attack), time moment after which the attack can be interrupted (begin moving after
the swing and do not wait till the animation is over).

How to add melee weapon.

In the second update, there is a special component “BP_WeaponStorage” for
creating and storing weapon in the project. It is in the folder of the weapon class.

Ik AddNew ~ X Import Save All & - | &5 Contg

Search Folders OEREzCcA M “carch ParentWeapon

i Il Turret ;-
il Hud b

M Interfaces

Attack Struct

The next step is to add the component to the Pawns (player and enemy). By default,
these components have already been added and renamed (deleted prefix “BP_").
It has been renamed as “WeaponStorage” in the Pawn by default.

“ f CharacterMovement (Inherited)
% Health

% CombatCamera

P

1% PawnNoiseEmitter

Select the component and find section “Weapons” in tab “Details”. There you will see

two map-variables:

-7 COmponents

+ Add Component ~

f Pawn_CloseCombat(self)

4 8 CapsuleComponent (Inherited)
(Component (Inherited)
T Mesh (Inherited)
¢y WeaponMesh
4 g CameraBoom
%y FollowCamera
&, TargetPoint
“# CharacterMovement (Inherited)
L Health
€, CombatCamera
€ xp
1% PawnNoiseEmitter

4 Variable
Variable Name
Tooltip
Category
Editable when Inherited
4 Sockets
Paren
4 Weapons
[» Weapon List
[» Available Weapons
4 Tags
Component Tags

4 Component Replication

WeaponStorage

1 Map elements

1 Map elements

0 Array elements

WeaponlList is a list of all weapon that can be added to the character.
AvailableWeapons is a list of all available weapon (kind of weapon in inventory). In
the list, it is possible to store weapons in which you modified their initial parameters

(upgrade).

By default, there is a weapon “PlayerSword” in the list. To add a new weapon, add
the weapon-structure in the map-array (button with the plus icon). Specify the name
of your new weapon. Pay attention that weapons cannot have identical names

(map-variable).

Let’s consider weapon parameters:

4 Weapons

4 Weapon List 2 Map elements

b8 FlayerSword -
R MyMNewWeapon
WeaponMame

Can_be_equipped

SM_Futurist

Weaponhesh

€ 0=

SocketTrail_Start

6 Array elements

1 Array elements

+ @
+ @

[Svorcsman s~ IR

MovementAnimaticn

[Available Weapons 1 Map elements

¥ SwordsmanPlayer_(dieHun_ 15 -
! € 0=
1

WeaponName is the name of a weapon. You must specify the same name as in the
array. In this example, it is MyNewWeapon.

Can be equipped Whether the current weapon can be put on the back (update 1 -
https://youtu.be/mzYNtDsmEQOg). The variable is needed for a weapon which does
not have a 3d model. For instance, hand-to-hand combat.

Weapon mesh is how the weapon looks like, choose its 3D mesh.

Socket Effect is a point from where the particles will be played (sparks)

Damage is a base damage value for the weapon’s strike.

AdditionalDamage is an additional damage value. It is better to add additional
damage via additional events (described below).

Attacks is a list of attack types with the weapon. By default, they follow one after the
other (you may choose a combo).

6 Array elements + 0

3 members -

A_Attack_00
Animaticn

DelayCaninterrupt

AttackPlayRate

Animation is an animation of the strike.

Delay Can Unterrupt is a time-delay after which the animation of the strike can be
interrupted with an animation for movement.

Attack PlayRate is the initial animation playrate for the strike (the speed of the
attack).

The further step is to add the weapon to our character. For
that, create a mesh and attach it to the character’s weapon
socket (Socket_Weapon). This component is present there
by default.

Then add the weapon component. By default, it is added with the event Begin Play.

AUQ Weapon componnent

[Add BP Main Melee Weapon

SET -

& > —»

Target [self | Return Value Weapon

https://youtu.be/mzYNtDsmEOg
https://youtu.be/mzYNtDsmEOg

When adding the component, specify the variable (variable type
BP_MainMeleeWeapon) for your weapon, so that later we can reference this
weapon of ours from any place. The component contains the logic of close quarters
combat. The component “WeaponStorage” stores parameters for the weapon
component, so that a weapon can be modified when rewriting these parameters.

In the next step, specify for the weapon component what weapon to use. In order to
do it, call function “Add Weapon” in the Pawn and write the name of your weapon.
We have discussed the creation of it above.

& Add Weapon

Target |TIT|
T — b Tl

Weapon Storage Weapon Store

Weapon Name
[Pla d|

By default, it is “PlayerSword”. The function writes parameters from the list
“WeaponlList” in the weapon component.

Let’s consider all events when working with “WeaponStorage”:

Target Available W

> Change Weapon »

C [
-— S

Weapon Storage Target Weapon Storage Target
Weapon Name [| Weapon Mame [|

Weapon Component Weapon Component

€ Save Weapon » <> Remove Weapon

D
Weapon Storage Target . Weapon Storage Target

Weapon Mame [

Save Weapon. It saves the current weapon by adding it to the list
“AvailableWeapons”.

Change Weapon. It replaces the current weapon with the specified one from the list
of available weapons (“AvailableWeapons”).

Remove Weapon. It removes the specified weapon from the list of available
weapons (“AvailableWeapons”).

Get Available Weapons. It returns a list of weapons available to the player.

Functions “AddWeapon” and “ChangeWeapon” in the component “WeaponStorage”
write new parameters in the weapon component. However, in order to apply the new
parameters to the character, you need to call the function “SetWeaponParam” right
after the parameters have been changed. For convenience, functions “Addweapon”
and “ChangeWeapon” have been created in the Pawn. There, right after the
parameters have been applied, the function “SetWeaponParam” is called.

Change Weapon Settings (WeaponStore) " SetWeapon Parameters

" & Add Weapon " & Set Weapon Param

B Add Weapon ge
P P— >
Weapon Store Target Target |L_|T|
Weapon Name Weapon Name

Weapon Weapon Component

Additional events in the weapon:

“& Add Attack Speed

Weapon 1 Weapon

O Add Damage [-20]

Remove D

Type [Name| Type [Name |

Add Additional Damage is an event for an increase or a decrease of extra damage
dealt by the weapon. For instance, due to the character’s level up or various skills.
Function “Multilncrease” is used.

Add Attack Speed is an event for an increase or a decrease of the attacking speed.
For instance, due to the character’s level up or various skills. Function
“Multilncrease” is used.

Inflicting damage (“Notify_Damage”)
Inflicting damage on actors is done via the event “CauseDamage” in weapon class,

but the information about the damage is passed through the animation via Notify.

For instance, open any animation of attack and you will notice “Notify_Damage”
along the notify timeline.

https://docs.unrealengine.com/latest/INT/Engine/Animation/Sequences/Notifies/
https://docs.unrealengine.com/latest/INT/Engine/Animation/Sequences/Notifies/

1 Details T Preview Scene Sett

4 Anim Notify

Notify
4 Damage Parameters
DamageAnimationType

DamageMultiply

4 Notifies

Notify_Damage must be in the frame of damage infliction. To position the notify,
click the RIGHT MOUSE BUTTON on needed frame and choose Notify_Damage.
Select the notify and you will see its settings in tab Details. Open the list of
parameters “Damage Parameters”:

Damage Animation Type is an animation type of the damage experienced by the
target (to the left, to the right, or backwards). The animation is either selected
manually in Enemy_Param in Al settings, or by filling the table.

DamageMultiply is a damage multiplier from the current strike.

Damage to targets is dealt according to the following principle. A sphere of a given
radius is created near the attacking actor. If the sphere intersects actors with tags
target (enemy groups), then they receive damage. You may switch off the check of
targets and the damage will be applied to all actors.

Distance is a distance from the character to the center of the sphere.
DamageRadius is a radius of the sphere, which intersects the actors.
DrawDebugDamage is a visual representation of the sphere for the convenience of
tweaking.

Animation of a character with a weapon.

All animation of a character (movement, behavior in a combat, animation of skills...) are in
Anim Blueprint.

== [ontent Browser

Ik AddNew ~ X Import Save All &

Swiords man i
The structure is done in such a way, that the weapon class has a reference to the Anim
Blueprint and changes all animation of the character. It is quite convenient when adding new
weapon types. For instance, you are planning to make a glaive. For that, simply copy the
Anim Blueprint and specify new animations there. Followed by that, specify which Anim
Blueprint to use in weapon class.

BP Main Mele

Class Settings NGIEEEIIEANIE

I Visual

I Component Tick
.:: I Weapon Parameters
I Target

I Attack

quht'CII{;!‘ 4 Animation
[
Animation Blueprint Swordsman_AnimBP - [S e R BN 4

SwordsmanPlayer_IdieRun_T00 =

€0

Movement Animaticn

Animation Blueprint is an animation blueprint, which will be used when the current weapon is
added.

MovementAnimation is a choice of a blend space for movement. Enemies may have their
own animations for movement, but same combat animations.

All additional animations are listed in category “Animation”

4Variables + | [Details & Pre

I State

& Math

[Lean

4 Animation 4 Anim Avoid 8 Map elements + 0
Movement_Blendspace
Anim_Roll

4 Default Value

A_SW_Avoid Forward -

M . o

A_SW_ Avoid_ForwardRight =
-

ForwardRight
€« D

E1C1E1E1E1E) E)ENE E)

\Ji' A_SW_Avoid ForwardLeft -
Library of functions “CloseCombat_FunctionLibrary”

This library contains functions that might be useful outside of a single actor.

Anim_BlockHit

Function “Multilncrease”

One of such function is Multilncrease. The function is for changing values from
different inputs. For instance, the damage caused by a weapon can get increased
due to a skill and because of a level-up. However, since the increase due to a skill
can be temporal, this is why you need the help of Multilncrease function.

< AddadditionalDamage

i Multi Increase

P ——» B > —»

———
Add Damage @ ———_ Additional Damage @——— @ Base Value Final value @ @ Additional Damage (0] = Add Damage =

SET SET

Remave E——— A e Final Map (& =

Type T ——— = 7
i Add Damage |8 = Map Type

The function works in the following way. There is an input value (Base Value), to
which another value (Add Value) needs to be added or subtracted. Then the current
value (Add value) is written in map variable under some key (name). A Boolean
variable Remove is responsible for adding changes or removing changes made. In
practice, it looks like that:

© Add Additional Damage > Add Additional Damage ° > Add Additional Damage
larget 15 BF Main Mel I darget 1s BF Main Mel I Target 1s BP Main Meleg W

.f[)elay
. —_— ’ . — . |::IZ|I11|:||ET.E€|. —_— ’

Weapon Target Weapon Target C» Duration |?| Target

O Add Damage [30] O Add Damage [20] T O Add Damage [

Weapon
Rem

In the beginning, the weapon damage is increased by 30 points type of “LevelUp”,
then extra 20 points of damage type of “Berserker” are added, and, after 5 seconds,
from the total value of damage a value type “Berserker” is subtracted and it amounts
to 20 points. If Boolean variable Remove=true, there is no need to specify the value,
since it is already in the database.

For the sake of convenience, in all components where function “Multiincrease” is
used, events are implemented. The names of the events start with the word “Add”.

Function “TargetTags”

The function is for adding or removing tags in an actor. It works with arrays, so that multiple
tags can be added or removed at the same time.

Function “CheckTargetTag”

This function checks whether specific tags are assigned to a specific actor, and, if it is so,
returns a Boolean value.

Artificial Intelligence (enemies)

In the project, there are enemies capable of patrolling surroundings. If they detect a
target, they can attack it in close-quarter combat. For the start, let’s consider adding an
enemy to the scene. There are several ways to do it. We will discuss the method of direct
insertion of an enemy into the scene and the method of spawning of an enemy via Blueprint.

The first thing is to determine the navigation inside your level. This is done by adding volume
“Nav mesh Bounds Volume”, which should comprise your scene where potential enemies
can move.

E #‘ ta ‘!Il

Blueprints rmH Cs 3uild &y Launch

* Nav Link

]
Nav Mesh Bounds Volume

Nav Mesh Bounds Volume
DNEVRNEIGERYERY hold (Ctrl + Alt) for more

4 & Content
4 8% Close I:—rrlt yat
[I Anim
4 i Bluep
4 % Enemy
[I Turret
[et
Select the actor and go to its settings.

Enemy_Swordsman

Search jo)
' Enemy_Swordsman(self)
Search fe] B ©
o
o
s
otatio
1|
PlayerWarrior

PlayerEnemy

Level: Untitled2 (Persistent)

Specify the target for the character and to which group it belongs first. The default target for
the character is the group “PlayerWarrior”, which is the default group of the player’'s
character. The character belongs to the group “PlayerEnemy” by default, which is a group
hostile to the player. It is very important to take into account the information of the group,
since player’s targeting is done based on the name tags of the actor. The tags are assigned
at the event Begin Play via described above function “Target Tags”.

[Camera f' Target Tags 4 Default Value

4Target P — 4 Target Group Tag List 1 Armray elements

Target -—)
Target Group Tag List S~ —— i Target Name 0

Remove D

Actor

(™ FEind Res

S P T

It is possible to assign multiple groups at the same time, in other words, you can make any
number of enemy or allied groups.
The next step is “Al” settings.
4 Details & World Settings
i -
+ Add Component;= o Edit Blueprint =

Search

', Enemy_Swordsman(self)

BehaviorData

+ D

Name Type Behavio Warrior_Balanced

Data Behavior

Enemys_Data

Data Enemys
Bl o

Name Type Enemy

In this section, there are main settings of behavior in a combat, as well as parameters of the
character such as health, amount of damage that goes through blocking, amount of damage
that is applied when dodging.

Start Sensing. Whether the character is able to see and hear from the start.

Can Stealth Kill . Whether the character can be killed with the skill “StealthKill”.

Custom Behavior Param. Whether to ignore the table and specify all parameters manually.
Upon enabling this parameter, open the list Al Behavior Param and specify parameters of
character’s behavior.

Custom Enemy Param. Whether to ignore the table and specify all parameters manually.
Upon enabling this parameter, open the list Al Enemy Param and specify parameters of
character’s behavior.

Data tables are used in the project for the convenience of filling in and storing data regarding
characters behavior in combat.

When a character finds a target and stays within the combat range (6 meters by default), it
makes decisions every 0.3 second at percentage rate (0-100) compared to the specified

parameters in structure Al_BehaviorParam. The structure is assigned data from the table or
from manually specified values (based on settings presented above).
Let’'s open the table and discuss settings for behavior in a combat.

Search Folders jo/ T Filters =

4 @ Content
4 % CloseCombat
[Bl Animations
4 % Blueprints
4 % Fnemy
4 % Character
Bl EnemyParameters

There are 2 types of pre-made behavior in the project by default.

Warrior_Balanced is a character behavior balanced in attack and defense.
Warrior_Aggresive is an aggressive behavior set at constant attack.

You may have any amount of pre-made tables, which you may either specify beforehand or
modify dynamically with the help of events in character. Fro that, use ChangeBehavior for
behavior modification and ChangeEnemyParam for modification of parameters.

1. Data Table

Search

5. Row Editor,

L 8 Warrior_Balanced ~ [l

4 Row Value

8
=

Description of behavior parameters:

All parameters are in percentages (0-100%). For example, the first parameter from the top is
the parameter of Chance_AggressiveFollow. It is equal to 30%, which means that the
chance to make a decision to get closer to the target is 30 out of 100, and the
decision-making is every 0.3 second.

Chance_AggresiveFollow is a chance to make an aggressive step towards the target
followed by an attack.

Chance_Stand is a chance to stop.

Chance_Taunt is a chance to taunt the target after the stop.

Chance_Attack is a chance to initiate the attack if the target is within 3 meters. In case you
do not get the chance, the character does a quick dash.

Chance_AvoidAttack is a chance to dodge an attack by rolling.

Chance_BlockingAttack is a chance to use a block.

MaxNotAttackingChoices is the maximum amount of decision-making not related to
attacking. After decision-making not related to attacking is over, the character starts getting
closer to the target and will attempt an attack. Once the attack is done, the decision-making
not related to attacking starts all over.

Choice_TimeAfterDamage is a time interval. If a character takes damage, then the time
interval determines when the character is able to make decisions again.

The character makes decisions in a combat based on these parameters. You may refer to
comments in blueprint for a more detailed breakdown. Every part of the source code has
detailed commentary.

Patrolling

The character can patrol different area of a game level. The patrolling is based on specified
key points. All parameters of patrolling are specified in a corresponding tab in character’s
details.

5 Details @ World Settings

; n

4 Add Compnnerit = o3 Edit Blueprint ~

Sonrrh
Search

" Enemy_Swordsman(self)

b Al

4 Patrol

Revert

» Collision

Patrol After Kill. Whether the character does or does not continue patrolling after killing the
target.

Patrol Movement. Whether the character will do patrolling.

Patrol Points are key points for patrolling. They contain coordinates. Specify current
character’s location in the first point. There can be an arbitrary amount of points.

Point Delay determines the amount of time the character can stay in key points.

Point index is the current point where the character is going to (it is an index of array of key
points).

Loop. Whether the character returns in the first key point and goes on patrolling upon
reaching the last point.

Revert. Whether the character visits previous points on his way to the first key point.

The parameter XP contains the amount of experience awarded for killing this character.

4 Details @ World Settings
L Enemy_Swordsman i

3 Edit Blueprint ~

search

. Enemy_Swordsman(self)

Spawn of enemies via blueprint.

Simply use node “Spawn actor from class”. When choosing class “Enemy_Swordsman”,
all settings described above will appear. Make sure to specify Spawn Transform, which is a
location in the scene where the enemy appears.

£ Event BeginPlay & SpawnActor Enemy Swordsman
» »

Class Return Value

Spawn Transform

Collision Handling Override
Default

Data Behavior
o forDats «

Data Enemys

re Data -

- Mame Type Enemy

| Warrior |
Patrol After Kill G4

Patrol Movemnent O

|
1
| Ef Patrol Points

| O XP [25.000000]
Start Sensing]
Can Stealth Kill [

Instigator
R e

This is how you can adjust parameters of attack in tab “Attack” such as:

AttackDelayMin is the minimum time delay between attacks.

AttackDelayMax is the maximum time delay between attacks.

AttackTimeRotation is a speed of rotation towards the target during an attack.
AttackTimeLookAtTarget is a time interval after which a character making turn, stops turning
towards the target. It might be useful when implementing sneaking behind the back logic.

Turret

Everything described above is applied to making a turret for a game level. The turret shoots
with balls with parameters of a projectile.

Search Folders jo! T Filters ~ EEEIRINIIER

4 @ Content
4 g% CloseCombat
' Il Animations
4 % Blueprints
[Bl Enemy
[I Hud
M interfaces

T Details ® Wor

:,.. WY Modif ne ; L2 BP_Turret £

#Add Component ~ o Edit Blueprint -

. Navigation Testi

u
Pt
4 Transform
?4 52010555 |4 -184.1862 [19.990985
i 00° o] 000 S fdooc]
O Y N 2 S
4 Target
[Target Tag List 1 Array elements + @
' Target Group Tag List 1 Array elements + @

4 Shooting

Jamage

4 Rendering

— |
== ContentBErowser Input

Auto

£ E)SaveAll & = | &= Content » CloseCombat » Blueprints » Enemy » Turret « s
nput Priority

- Actor
1

SIGL Always Spawn, Ignore Collisions =

v

Parameters Target:
Target Tag List is a list of names of target groups for the turret.
Target Group Tagq List is a list of group names the turret is related to.

Parameters Shooting:
Shooting Rate is the shooting rate.
Damage is the damage value caused by each shot.

Making of a new enemy.

Let’s consider an example of making a new enemy for close quarter combat. Take the actor
Cube, which we have made in section “How to use health component’, or follow the
instructions in that section and make it, if you have not made it yet.
The interaction between targets also happens with the help of interfaces. This is why the first
thing is to attach the interface “Target_Interface” to our new enemy.

S Toolbar 3 Details

S . m Y E -] o -
- 1] i

4 Class Options
Compile Save FindinCB
Parent Class
f Construction Serip ma CventGraph

4 Blueprint Options
Damage Type
Instigated By Blueprint
Damage Causer Hide C

4 Interfaces
4 mple
Health

Target Int

My Bluepnint
+ Add New ~ BEEEIE

4Graphs

I m= EventGraph

4 Functions
¢ ConstructionScript
4Interfaces
4Target
T Target_Health
t CombatState

ackParameters

t Weapon_Vec
Macros

4Variables

[Components

Event Dispatchers

Now specify to our actor the group it belongs to. For that use function “TargetTags” and
specify the group PlayerEnemy (it is a hostile group to the player by default).

<> Event BeginPlay | Target Tags

- P
LT
i Make Array i Target Mame
O 101 [PlayerEnemy | Array g2 ° Remove ()
Add pin == Actor

_..r"__'——
Self

The next step is to pass parameters of health via interface, so that the attacker knows the
value of health of the target. Open function “Target_Health” in tab interface “Target” and
specify Parameters of our health component. Now the player can do targeting and see the
target’s health.

Further on, it is necessary to clean names of groups when the actor dies, so that after the
death of the target, the player will not be able to target it anymore. For that, copy nodes for
adding a group, but specify parameter Remove.

&> Event Death ‘ﬂ‘ﬂ [set simulate Physics
Interf Target is Primitive Compor | Target Tags
P——» R —

Damage Causer Target Make Array

_ &5 Target Name
Cube 2 Simulate [, O [0] [PlayerEnemy] Array £ Remove [

Add pin = Actor

Self

The next step is to pass information about the death of the actor. To do so, simply pass
interface “Target is dead” to the attacker at the Event Death.

> Event Death ‘ﬁ Téet Simulate Physics F & Target Is Dead =]

—_—

S Make Array

Damage Causer Target Target

/
Simulate E o L0 |F|53"' E‘"""I"'l O XPvalue \1_‘?|

Add pin #=

—_——
Self

Also, you can specify experience received for killing current actor. That is all, our simple
actor is ready. Now characters can target him, kill him and get experience for doing it. For
more complex and advanced enemies, refer to commentaries within the code of enemy
actors “Enemy_Swordsman” for close quarter combat encounters and “BP_Turret” for
fighting at long range respectively.

Experience (XP) management component.

The component is for managing experience and leveling-up the character. Add it just like you
add health component. The interaction between the component and a character is done via
interface “CharacterXP_Interface”.

== Content Browser

I AddNew~ X Import Save All & &

Search Folders jo! T Filters ~ EEEEIRRIRNE

4 &= Content
4 B CloseCombat
[Bl Animations
4 §% Blueprints
[- Il Enemy
I il Hud
BN Interfaces
[l Misc
[Bl Player
B Weapon

This is how it works. The component has a structure of a character’s level, which is changed
according to the index value (level) in the array of all levels after certain amount of
experience is collected. By default, experience is added when enemies are killed. This is
done with the help of event “Add_XP”.

© Event Target Is Dead _‘5'\% & Add xp

=D

XPvalue @ —_ Target

T— @ xp
CharacterXP component

T —

xP

In the example of the enemy actor just created by us, when the actor dies, it sends a
message to the interface of the attacker about the death and experience received. In its turn,
the attacker responds to the event by passing information about the experience in
component “CharacterXP_Interface”. The component calculates the experience. If the
experience amount is sufficient to increase character’s level, the component increases the
level of the character by updating its parameters from the structure and information is
displayed in game interface (HUD).

Let’s consider experience level structure. Open component “CharacterXP_Interface” and
go to “Class Defaults”. We are only interested in tab “XP Settings”.

1. Details

’ B o debug object selected

.“E,f.aul.[.-a Play Debug Filter

I Skills

I» Component Tick

I- Parameters Varible

4 YP Settings

[Levels 5 Array elements

Current Level

Levels is an expandable list of structure sets for each level of the character.
Current Level is the current level of the character. Input 1 to begin with the first level.

Leave XP Current and XP_Remains as zeroes. These are variable used in calculation of
experience.

XP level structure:
4 ¥ P Settings
4 | evels 5 Array elements
3 members
3 members

3 members

4 CharParameters
MaxHealth
HealthRex ryTime
BlockDamageMultiply
AvoidDamageMultiply
AdditionalDamage

eedRate

4 Skills 4 Map elements

(] -
N StealthKill o
Bl HeavyAttack o
[-
3 members
3 members
Current Level
XP Current

XP Remains

In this example, we discuss in details the 2" level of the character. You may create any
amount of levels that you need.

Level XP is an amount of experience needed to get to the 3" level.

CharParameters is a structure of character parameters at the current level (the 2" level). It
stores information such as the amount of health the character must have, how much less
time it needs to get his health fully restored, how much damage the block absorbs, weapon

damage buff, etc ... You may have extra parameters, just expand the structure
“CharParameters”.

== Content Browser

I AddNew~ X Import Save All & = | I& Content

FER Search Folders jo! T ilters ~ EEEEIINNNE

4 [Blueprints
I Bl Enemy
[Bl Hud
I interfaces

The structure and other parameters of the level are passed to the character when the level is
up at the event “Add_XP” via interfaces. Refer to commentaries within the source code.
Skills is an array of skill structures of the character in the current level.

4 Skills 4 Map elements

I Stealthiill
FN HeavyAttack

Skill_Active

Skill_Hudlcon

Skill_DefaultBlock

In the example of the skill “HeavyAttack”:

Skill_Active. Whether the skill is enabled in the beginning.

Skill Cooldown is a cool-down time for re-activation of the skill.

Skill_Hudlcon. Whether the skill has a visual representation on game interface (HUD).
Skill_DefaultBlock. Whether the skill is blocked in the beginning. This parameters is for
switchable skills like, for instance, the fatality. The fatality is activated only after you have
activated it and delivered the final blow to a target. This is why the fatality is initially blocked.
It is activated by pressing its activation button (by default, Key 2).

These are all the parameters that are passed across character’'s XP levels by default. If you
add extra parameters that you need, fill the array for all XP levels of the character.

Character’s Skills

You may use various skills of the character. For that, you must specify them in XP
management component “CharacterXP” of the character first. By default, the skills are
added at the event “Use Skill”.

& Blockskill

Our newly added skill must have unchangeable name. Add new skills similarly to existing
skills.

Types of skills

By default, there are 3 types of skills:

Active are skills that are executed by pressing a button.

Passive are skills that must simply be present in the structure of a level to be executed.
Switchable are skills that are executed only in case they are enabled with a switch
beforehand.

Let’s consider all 3 types of skills based on existing examples of skills.
Active skill. A series of 5 consecutive strikes “Combo” is an active skill and is binded to Key

Skill Berserk Skill Fatality Skill Combo Skill Throw Ball

When pressing the key, the search for the skill (together with extra conditions) is being done
in component “Chatacter_XP”. This component is renamed as XP to make it shorter.
Function “Find Skill” is implemented to do the searching for skills.

= Inputs

“& Use skill

© InputAction Skill_3 (T Branch (5 SetCombatstate
—_—_— ¥ True » If Already in Combat [

Condition False [> If Set Combat True [

N

—
Speed Combat @————
e —
Combat Rotation Rate @———
Avoid Roll
AT

Is Air

Frnasa
Active
Find :
skill Cooldown @ A1 D O D O B A OO 55 =2 o i =t Yt el I o B = B o B B S ==)

If the current skill is found and enabled (not in the cool-down state), then the skill is executed
with the help of function “Use Skill”. The function triggers both the cool-down timer for the
skill in XP management component and an animation in game interface. Actual logic of the
skill goes after function “Use Skill”: triggering of a combo animation and various effects.

Passive skill. Stealth kill from behind does not require a cool-down, this is why it is a
passive skill. When targeting and closing the distance, the skill “StealthKill” is being
searched for. If it is present in the structure of the level, then there is an option to kill an
enemy from behind.

Switchable skill. The fatality has both cool-down time and enabled/disabled state. The latter
is done with the help of the blocking of the skill. The fatality works as follows. If such skill is
present in the structure of the level, and it is not blocked, and it is enabled (not in cool-down
state), then during the final strike to an enemy, the fatality is activated. By default, blocking
/unblocking is switched by pressing Key 2.

Visual representation of skills.

There is a unified visual scheme for all skills in form of material “M_2D_Skill”.

= ConientErowser

I AddNew=s X Import [SaveAll & 3 | & Content » CloseCombat » Blueprints

Instances for each skill are in folder Skills. To create a new icon for your skills, click RIGHT
MOUSE BUTTON on material “M_2D_Skill” and choose Create Material instance. You
create an instance, which has settings for visual representation of the skill.

4 Parameter Groups

4 Co

/ T_Skill_Berserker._[co
; € O3

4 Scalar Parameter Values
I General

I Previewing

Color is a background color of the material.

Color Intensive is the intensity of a color (brightness).

MagicMap is a texture for a background animation.

Skill_Icon is an icon for the skill on the foreground.

AnimSize is a parameter for filling the background during the skill cool-down.
Demonstration of the material.

After you are done adjusting the visuals for your skill, you need to place it into the database
of visuals for skills in widget “Hud_Skill”.

== Content Browser
s AddNew~ & Import Save All ¢ 2 &=

FEY Search Folders fo! T Filters ~ [JEEEIRSIT

4 g Content
4 C 5

4 [Bluepr

I @ Enemy bl

Open “Hud_Skill”, select map variable “Skill_Visual” and add a new index. Specify the
name of the skill on the left. It must be the same name used in XP management component.
Specify your created material on the right. Now your new icon is in the database. If a skill
with the same name is added, the game interface (HUD) will display your skill.

Creation of a new skill.

Let’s consider creation of a new skill. We are going to create a skill that fully restores health
and has a cool-down time of 20 seconds after it has been used. At first, we create its visual

https://youtu.be/XthCAADyuQ4?t=7m11s

representation (material_instance) as it has been described above. Here is what | have got.
The icon is available in the project:

1l [Details

e - [o -

4 Parameter Groups

T_Skill_HealthRecovery_lco. =

*D.:I

4 Scalar Parameter Values

For the unified structure, place your material together with other materials for skills.

== Content Browser
g AddNew~ X Import Save Al & = | I Content » CloseCombat » Blueprinis
search Folders fo| T Filters ~ JEElRNIIE
4 & Content
B
[Bl Animations
4 §% Blueprints
i B Enemy
4 % Hud
4 % |con
4 i Materials
) skill
[Bl Textures

Further on, add our material in the list of visual representation of skills in widget “Hud_Skill”
as it is described above. Add “Health_Recovery” to the name of the skill.

Next, add our skill in component “CharacterXP”. Go to event “Use_Skill” and add
“‘Health_Recovery” by analogy with other skills.

B 1 Details
= E /® ﬁé,‘ a -!,‘ > B Mo debug object selected = h

Save FindinCB Search Class Settings Class Defaults Play Debug Filter 4 Fin Options

Hate Level Paral e Useskill 4 pin Names 6 Array elements +

> : o - -
¥ Switch on String 75 skillBlocking? (75 SKillcooldown © g o
» Roll I » skill Is Mot Blocked b ——— B After Cooldown > 3 s
Selection Fatality I il Name [Roll | skill Blocked [> skl Name [Rall | 4 >4
Is Case Sensitive []

Has Default Pin B -

Berserk ¥ -
Lo ; skillBlocking? T Skillcooldown e

Combo
» -3 Skill Is Mot Blocked b — [After Cooldown [

Heavy Attack [" -
Shill Name [Fatality | skill Blocked [skill Name [Fatality |

Health Recovery [e
(7Y skillblocking? 7 Skillcooldown

» Skill Is Mot Blocked b — [After Cooldown [

Add pin 4

skill Name [Berserk] skill Blocked > Skill Name [Berserk |

(T ShilBlocking? (T Shilcooldown]
» Skill Is Mot Blocked b — B After Cooldown [

Skill Name [Combo ‘ skill Blocked [Skill Name [Combo |

(75 SkiliBlocking? £} skillCooldawn o
[skill Is Mot Blocked b = B After Cooldown [

skill Name | HeawyAttack | skill Blocked [

77 skillblocking? T SkillCooldawn ©
» Skill Is Not Blocked b ——— B After Cooldown >

Skill Name Skill Blogked [Skill Name
Health_Recovery | Health_Recovery |

Your result should look like as in figure above, at the bottom after “HeavyAttack”.

Then specify at what level the skill becomes available and its settings. To do so, go to Class
defaults or select variable “Levels”. Go to the first index (the first level), then open the list of
skills and add our “Health_Recovery”. This is what you should get:

4 Variables = | 4 Default Value

&> Skills A |gyels Array elements + @
[: Character " .
AXP Settings 0 3 members

E 47 3 members

= CurrentLevel | Level_XP 10.0

== XP_Current [* CharParameters
= ¥P_Remains
[: Parameters Varible

Event Dispatchers 4
Pl Stealthkill
PN Health_Recovery

4 Skills 3 Map elements

Skill_Active
Skill_Cooldown
Skill_Hudlcon

Skill_DefaultBlock

Settings of your skill:

Skill_Active is enabled, since the skill must be enabled from the beginning.
Skill_Cooldown is equal to 20 seconds to re-activate the skill as it was planned.
Skill_Hudlcon is enabled, since the skill is active and it has an icon.
Skill_DefaultBlock is disabled, since the skill does not require blocking.

Now let’'s add actual logic of health recovery to the skill. Go to the character
‘Pawn_Swordsman” and add the input event for Key 5.

All Actions for this Blueprint
A|nput
4Gamepad Even

H Num B

4Touch Events
B Touch§

We add the following logic at this event:

L1} 1Y T F & Use skill f & Full Health Retore
{_Branch F :

4 P—0>

Condition : arget | g Target

Active
Find e Health

skill Cooldown @ =i

This is what happens step-by-step:

Look for the skill called “Health_Recovery’. If it is found and active (the variable Active will
be returned only if the skill is found, no need to double-check when running Find), then the
skill is used with the help of function “Use Skill”. This function starts the skill cool-down timer
and the animation of the game interface. The actual health recovery occurs after function
Use Skill. Event “Full Health Restore” from health component fully restores health.

Compile “Pawn_Swordsman”, launch the game, and you will see the new active skill for

health restoration, which is enabled by pressing key 5. All other skills work based on the
same principle.

—100/£100=——

Combat camera.

Combat camera is for additional overview or perspective between two targets. By default, it
can be used if the character is locked on the target. The camera keeps two targets in sight
(on the screen). Demonstration.

Camera settings.
Let’s discuss camera settings. Select combat camera component. You only need category
“Combat Camera Settings” in tab “Details”:

. Components ; i
= Components [: Variable

4 Add Component~ [EEIEIF® o sockets
I Pawn_CloseCombat(self) [Default

4 8 capsuleComponent (Inherited) b Inner Variables

R, ArrowComponent (Inherited) [Additional
4 1 Mesh (Inherited) b Change Target Vars
¥ Weaponhesh x
et 4 Combat Camera Settings
4 o CameraBoom

%y FollowCamera

& TargetPoint Max Camera Distance

Min Camera Distance

¢ ST Interpolation Time
* § CharacterMovement (Inherited) il -

&% Health Camera Channel

+ CombatCamera b Tags

Min Camera Distance is a distance between the camera and the center between two targets
at their minimum distance.

Max Camera Distance is a distance between the camera and the center between two targets
at their maximum. The maximum distance is 7.5 meters.

Interpolation Time is a time interval for a smooth transition of the camera from the combat
mode into the basic mode.

Camera Channel is a channel for the camera. By default, an additional channel is created for
the combat camera. It is needed to ignore some objects. For instance, there is a box in the
level (a pole, some prop, ...). During a combat, the camera should not collide with such
object and spoil the view, but when there is no combat, it must collide with the object.
Therefore, in the object collision channel specify the channel “Combat Camera” to ignore this
object.

) Details & wvorl
14 SM_Primitive_Cart

4+ Add Component = % Blueprint/Add Scrip

Callision Enabled (Query and Physics) ¥

WorldStatic

e Overlap Block

https://youtu.be/XthCAADyuQ4?t=49s

How to add combat camera

Combat camera is a component and can be added to any actor, which uses a spring arm
and a camera. To add combat camera, choose it in the list Add Component.

= Components

4 Add Component -

L BP N Ca

Followed by that, a child component of “Scene component” for the spring arm must be
created. In the project, this component is renamed as “TargetPoint”. The component is the
location of the end point of the spring arm. This is needed to return the camera in its base
position. The component itself must be located in the same coordinates as the camera.

® FollowCamera

i, TargetPoint
®f§ CharacterMovement (Inherited)
€ Health
€, CombatCamera

M iy Bluepring

4 Add ew - ETNINS) © -

4Graphs
bm= EventGraph

4 Functio

[AddTarget
f TargetingDis
[Hud
[Movement
o i

The last step is to pass information about components into combat camera component. The
logic of the combat camera must know what components to work with. It is better to be done
at the event Begin Play. Call function “Set Camera Components” from combat camera
component and specify the components.

" set Camera Components

&

ST ——
Combat Camera Target

Follow Camera Camera

Spring Arm
Camera Boom BT
Target Point

Target Point

To make sure combat camera works correctly, it must be given a reference to the target. The
camera itself is enabled at the event “Start Interp”. The event is binded to button “V” by
default.

£ Start Intep

Target Actor

Target

Combat Camera

Refer to commentaries inside Blueprint classes for a more detailed description of the source
code. Also, read pop-up tips when pointing the mouse cursor at the parameters.

Thank you for your attention.
With best wishes, ZzGERTzZ.

