

Character Interaction

Documentation

(Unreal Engine 4 asset)
https://www.unrealengine.com/marketplace/character-interaction

Video overview of the project

Video of the first update (IK, First Person Camera support, etc.)
Video of the second update (Extended system for movement)
Video of the second update (Complete revision of the project)

Documentation written by the project author ZzGERTzZ.

Manual version : 3.0

Last update : 12/07/2018

https://www.unrealengine.com/marketplace/character-interaction
https://www.youtube.com/watch?v=62A-nz78_oo
https://www.youtube.com/watch?v=j2-ljHRwBcM
https://www.youtube.com/watch?v=vtPGh7kSZf0
https://www.youtube.com/watch?v=YrbuAIU-K4E

1. Introduction:

Project Character Interaction is created to provide developers with a template for
games of different genres. The template includes a system for character movement,
character interaction with different objects, use of various firearms, picking up and
crafting different items, use of means of transportation, making of different enemy AI, etc.

The package includes the following necessary elements of gameplay:

Basic movement with procedural bending to utilize fewer animations while feeling the
character’s response to the change of direction during movement. Also, there is a
complete implementation of weapon management that comprises aiming, reloading,
shooting in any direction, equipping, and changing weapons. There are the jumping
system, movement while crouching, movement while aiming, etc.

Interaction with objects. These can be either various switches, levers, buttons, valves
or any other interactive object types limited only by the imagination of the developer.
There are 10 templates for such objects in the project (it can be extended in updates).
These are different buttons, furniture, levers, a climbing wall, etc. Learn more about them
from the video overview of the project in the title page.

Picking up items. Picking up items is an intrinsic part of the genre. The autodetection of
the character location and selection of a proper animation are implemented in the class.
Therefore, all that is required is to specify the item name, its model, and text. Also picking
up of custom items is possible. In the demo level, there is an example of a handgun that
must be picked up with a custom animation. In the demo level “ZombieCity”, there is a
bulletproof vest that increases character’s health or gas mask that allows to traverse
rooms with gas.

Inventory. There is an inventory class in the project that allows you to create various
quest items and transfer resources. It also supports different ammo types in the inventory
to use with different firearms and so on.

Firearm. A fully functional weapon class includes settings to create different firearms. It
includes ballistics (one may either simulate flying projectiles or use ray-tracing systems),
reloading, bullet recoil and spread, physical momentums, firearm shells and clips,
animations of both weapon and a character who possesses this weapon… There is a list
of settings in the video. The settings were greatly extended in the 3rd update.

Storage of weapon. This class contains a system to create and store various weapon. It
allows one to create a new weapon and add it into the game with two clicks.

Weapon manager. There is a weapon manager where both firearm and melee weapons
available are visually displayed. You can equip a weapon on the character or disarm him,
or throw the weapon away and pick it up again.

AI. Basic Artificial Intelligence is capable of hearing, seeing, following, and attacking the
player with both melee weapons and firearms. There are several sample enemies like a
soldier, zombie (slow), killer zombie (fast). The characters are fully animated, set up and

have all necessary sounds. Also, as an example how to work with AI, each class has its
unique traits, e.g the soldier class can use a helmet, the zombie class has character look
randomizer, etc.

Transportation. There is a class for creating various transportation means in the
projects. The class supports interaction with the character, as well as a vast amount of
modules such as the decor module (car repainting with the help of aerography), nitro
(boost), fuel consumption, impulse based defense module, weapon system and so on.
There are two types of cars in the project: basic one and combat one. Cars are fully
animated, set up and have all necessary sounds.

Close quarter combat. There is a basic support of close quarter combat. Functionality is
implemented for the character to fight depending on presence or absence of a weapon in
his hands. For instance, the character can hit with a buttstock. Also, it is possible to add
various melee weapons. By default, we add a knife as an example. There is an execution
system for enemies: takedowns, which includes the functionality to set up animations,
conditions for use, sound support, effect, and so on.

The package also contains various sound samples, weapon models, fully physical target
for shooting, basic inventory, HUD for the character, HUD for the car, character models
with additional body kits (a bulletproof vest, gas mask, handgun holster, mechanical
holster for a two-handed weapon), a soldier model and a helmet for him, 3 zombie
characters split for randomization, 3 cyber-zombie characters split for randomization.
There are demo levels for different classes including completely playable zombie town.

There are many comments within the code of the project, as well as interactive tutorials.
Both First Person Camera support and Third Person Camera support are present.
I hope this starter package will be useful for game developers and it will make the initial
stages of development easier.

2. Basic movement:
The character movement is based on the basic class for moving from “Epic games”
character movement. This is why adjust all the parameters of movement in this
component. The character can move in any direction, move while crouching, do jumping,
and move while aiming with a weapon in his hands, use melee, use cars and so on. The
Pawn animation is passed to anim blueprint via interfaces.

It is done in order to avoid binding the character’s pawn to a particular anim blueprint. In
future, this should simplify integration of other characters, which have their own skeleton.

After the integration of the character, you can use the direct reference to anim blueprint
via “cast to” or by adding functions to the interface “AnimBP_Interface”.

Let’s consider crouching action to illustrate
this with an example. Several calculations
are being executed once you press the
button for crouching (can the character
crouch in this moment?). If the character
starts crouching, we call the interface
message “Set Is crouch” (it is a function,

which we have created in AnimBP_Interface beforehand) to call the necessary event in
AnimBlueprint, which activates the character animation and sets it in the state of
crouching.

All events of interface AnimBP_Interface in anim blueprint are located here:

You must initialize the interface in “Class settings” before you can call its events.

As far as the logic of character movement is concerned, it is based on dynamic changes
of parameters of the class component “character movement” from “Epic Games”. For
example, when running, the top speed is changed by pressing the button for acceleration
(SHIFT by default).

The character animation in anim blueprint is modified based on the character speed.
This is how the character animation and movement are interconnected within the
package “character interaction”.

 Animation settings
Structures for animation have been added into the project to add or replace animations of
a character more conveniently. In order to change animation, open
“Character_AnimBP” and find tab “Animation” in the list of variables.

By selecting different structures, you can replace the current animation of a character,
add new animation types, e.g. behavior with a weapon or different transportation means.

3. Interactions with objects:

The class of interaction with objects is used for visualization of character interaction with
the surroundings. The class is developed in such a way that developers can implement
object interactions of different complexity. Initially, there are 10 types of objects and
animations: various levers, buttons, furniture, valve, and etc. Watch the demo here video.

How it works:
The interaction system works according to the following scheme: there is a trigger in the
actor “BP_InteractionObject” that is activated when the character enters it and presses
the key for the interaction (“E” by default) to start the interaction. Once the key is
pressed, a calculation is run in the Pawn to determine whether the character can interact
with the object in this moment (is not he in the shooting state? is not he interacting with
another object already in this moment? and so on and so forth). In case the character is
allowed to interact with the object, a logic is executed in BP_InteractionObject, which
chooses proper animations, smoothly adjusts the character’s position, takes into account
the object type… and later, based on set timer, calls an event dispatcher of the result
according to which you choose different events (opening of the door, turning on electricity
and so forth).

https://www.youtube.com/watch?v=62A-nz78_oo

How to create a custom object for interaction:
Let’s consider the first example in the demo with a lever which rolls a retractable bridge.

Animation:
First of all, we need required animations for both the character and the object, which is
the lever in this case. To automatically set the correct positions of the character and the
object, make the animations relative to zero coordinates. In other words, animate the
object of interaction relative to the character as shown in figure.

Adding a new object:
After creating the animation and importing it into Unreal Engine 4, let’s add our new
object into the list of objects for multi use (if you intend to use the object one time only
and only in one level, it is sufficient to add it into the array in BP_InteractionObject on the
scene, but I would recommend to add it into the list as it is done with all objects by the
default).

The object must be included into enum (set of objects according to which settings are set
for a particular object) Enum_InteractionObjects

Let’s name our new object “FloorSwitch” (it can be any arbitrary name).

Customization of the new object:
The next step is to customize our new object. For that, open BP_InteractionObject in the
content browser. Add settings for our new objects into array Interaction Objects Array:

Description of all settings:
Skeletal_Mesh is the model of the interactive object
IKVisualPointPosition is the default location of the hand icon.
CharacterAnimation_0n is a character animation for activating the object.
ObjectAnimation_0ff is an animation for deactivating the object.

Our new object is ready. Now specify settings for interaction between the character and
the object. For that, proceed to character’s pawn “Character_Pawn”. Here we consider
the parent class, while you may have your own pawn as a child class. In this case, use it.
In the character’s pawn class, select component “Interaction” and find settings
“Interaction Settings” on the right. Next, open the list “Interaction Objects” and, likewise,
add the new object there like you did in in the IO class.

Description of all settings:
CharacterAnimation_0n is a character animation for activating the object.
CharacterAnimation_0ff is a character animation for deactivating the object.
UseCustomObjectAnimation. Whether to use specified below animation for the object. It
can be useful when, for example, your pawn is not a human character and it has its own
animations for interaction with the object. Another case is when a human character has
a different way to interact with current object.
CustomObjectAnimation_0n is a new animation for deactivating the object (it is used only
when the parameter UseCustomObjectAnimation is on).
CustomObjectAnimation_0ff is a new animation for activating the object (it is used only
when the parameter UseCustomObjectAnimation is on).
IsSearchingObject. Whether the object can be rummaged through (not needed for the
leverage).
SearchingAnimation is an animation which the character is using after activating the
object (used during the search). Not needed in this case.
DelayStartResultEvent is a delay after which the dispatcher call is triggered (which
triggers the animation of the bridge in its turn) at 2.5 seconds after the beginning of the
animation.
DelayForCanInterrupt_On is a delay after which the character can interrupt the
interaction with the object when activating it.
DelayForCanInterrupt_Off is a delay after which the character can interrupt the
interaction with the object when deactivating it.
IKVisualPointPosition is the default location of the hand icon.
CameraAnimVector is the location of the character camera during the interaction.
This is all, our new object has been added together with all the settings for interaction
with it.

Application of object in the scene:
The first thing is to place BP_InteractionObject in the scene by dragging it from the
content browser into the scene window. Choose our new object “FloorSwitch” from tab
interaction in actor properties.

Properties of Interaction:
Active. Whether the object is active and whether the character can use it in this moment.
The property can be changed dynamically, for instance, when a certain action is required
for the object activation (search for the keyword or access card in the example from the
demo level).
Used. Whether the object is active in the beginning. It switches on/off the used property
of the object.
Do once. Single usage of the object.
Use IKLocation. Use IK placements of hands on the objects.
Interaction Objects Array contains an array of default settings which you choose for
objects, which are assigned to the current object in the current level only.

Usage of object in the scene:
The next step is the binding of the bridge animation (or any other of your actions) to the
interaction with the lever.

Select the object in the scene and go to the level blueprint. There, add a reference to our
object in the scene by clicking the right mouse button.

 Then bind the required event to the dispatcher (in this case, animation of the bridge)

That is all. Now it is possible to control the bridge with the lever.

1. Doors :

The door class is intended for quick and convenient placement of doors in your level. The
door automatically determines on which side the character is and activates required
logic.

How it works:
The interaction system with doors works according to the following scheme: in actor
“BP_InteractionDoor” there are triggers, so when the player intersects them, he can start
the interaction with the door by pressing the interaction key (“E” by default). Once the key
is pressed, the calculations are run in the Pawn to determine whether the character is
allowed to interact with the door in this moment (is not he shooting? is not he interacting
with the object already in the moment? and so forth). In case the character is allowed to
interact with the door, BP_InteractionDoor executes a logic, which sets required
animation, smoothly adjusts the character locations, takes into account on which side
relative to the door the character is… and later, the character opens the door (if it is not
locked).

How to place and customize the door:
First step is to place BP_InteractionDoor into the scene by dragging it from the content
browser into the scene window. Let’s discuss the door properties in tab Door Setting of
the actor.

Properties of Door Setting:
Open. Whether the door is open initially.
Locked. Whether the door is locked (during the interaction, instead of door opening, the
dispatcher OnDoorLocked will be called. You can implement the logic to open the door
with this dispatcher. In the demo level, the logic is to find the key).
Use IKLocation. Whether to use IK placements for hands on the object.
Interaction Objects Array contains an array of default settings which you choose for
objects, which are assigned to the current object in the current level only.

Structure DoorStruct:
SK_Door sets a skeletal mesh for the door. If you wish to use a door with a skeletal
mesh, then you need to bind the door mesh to the current skeleton of the door (vertex
skinning), so that default animations can be used.
Door_anim... are parameters that point to animations of the door. You can choose them
at any moment. For example, in the demo level ZombieShootingRange, the door is
kicked down and it uses different animation.
Character_anim… are parameters that point to animations of the character by the
analogy with the door.
UseStaticMesh. Whether a static mesh should be used for the door.
SM_Door sets a static mesh for the door.
CharacterAnimType is a type of interaction for the character. You can set several
interaction types, for instance, knock off the door or open it slowly, etc. Also, instead of
making several interaction types, you can simply specify character’s animation with the
help of the block of settings “Custom Character Animation”. This can be useful when
specific interaction is needed with this particular door. The settings are also in the same
door class.

Character’s settings to interact with the door:
Proceed to the player’s pawn “Character_Pawn”. Here we consider the parent class,
while you may have your own pawn as a child class. In this case, use it. In the
character’s pawn class, select component “Interaction” and find settings “Interaction
Settings” on the right. Next, open the list “Doors”, where interaction types are. By default,
there is just one “BaseDoor”.

Door_anim... are parameters that point to animations of the door.
UseCustomDoorAnimation. Whether to use specified below animation for this type of
doors. It can be useful when, for example, your pawn is not a human character and it has
its own animations for interaction with the door. Another case is when a human character
has a different way to interact with current door.
DelayForCanInterrupt.. are time-delay after which the character animation can be
interrupted.

That is all, the new door is ready to be used. The door calls two event dispatchers, which
you can use to add extra logic for the moment the door is being opened, OnDoorOpen,
and if the door is being closed, OnDoorLocked, respectively. You can call these event
dispatchers similarly to how it is described in section Usage of the object in the scene.

Firearms
The weapon class in character interaction allows you to implement various firearms. The
weapon class is shown as a character component. The character has two weapon
components by default: primary one and secondary one.

We implemented the following scheme of interaction between the weapon and the
character:

In other words, the character has 3 weapon components “BP_Weapon”: primary,
secondary, and current one.
The weapon class itself is called “BP_Weapon”. This class contains all logic of firearms.
However for a more convenient way to create and store firearms, we have devised the
class “WeaponStorage”. This class deals with the structures of weapon component and
stores them based on indexes. By doing so, it replaces the structure of mention above
components for the use of weapon. This is why to switch between weapons or to change
them, we have created vidget “Hud_WeaponManager”, which creates a feedback
between the component “WeaponStorage” and the pawn (character).

Adding a new firearm

Here we will consider how to add a new firearm in details by using shotgun as an
example. The first step is to add all the content of the shotgun.
At first, create the shotgun model in such a way, that its zero coordinates are in the
center of the shotgun handle as shown in figure below, so you will not need to realign
them later. Create a skeleton for the weapon if it is needed (for locks, forearm, etc). If
you do not use animations on the weapon, then assign the model as a skeleton mesh
during import. A weapon in Character Interaction must be a skeletal mesh.

A shotgun is available in the project (update 3)

Once the weapon model is created, proceed with making necessary sockets:
Socket_Muzzle is a location to simulate the firearm muzzle.
Socket_Shell is a location of ejection of a bullet shell.

Socket_Clip is a location of clip ejection (not used in the example with the shotgun, since
there is no clip).
Also, if needed, add sounds for the shooting and reloading in the project.
After all the shotgun related content is added in the project, proceed to the component
“WeaponStorage” in order to set the weapon up and add it into the game. For that, open
the pawn “Character_Pawn” and select the component WeaponStorage. On the right
you will see its settings.

Weapon list is a list for all weapon in the project. Add here all the weapon that the current
character can use. You may set its onw list for each character. If a weapon can be used
by all characters, I would recommend to add it in the parent class “Character_Pawn”.
Then, in future, all child classes will know about this added weapon.

Add our new firearm shotgun via clicking on +, which is opposite WeaponList tab.
Give a name to the weapon. In this example, it is called “shotgun”. Let’s set settings of
our weapon step by step.

WeaponName is a technical name of the weapon. Use the same name you use to name
the new index in the array. In this example, it is shotgun.
PrimaryWeapon. Whether the weapon is primary or not. This parameter determines two
weapon types option a weapon can be attributed to: either primary (two-handed) or
secondary (one-handed). In our case, the weapon is primary, so checkbox
PrimaryWeapon.

Damage settings:

BaseDamage is the base damage value from the weapon when it hits. Since we consider
the shotgun, so multiple projectiles will fly, we key in a small damage value.
UseRadialDamage. Whether the projectiles will do area of effect type of damage. For
instance, an explosion from a rocket.
DoFullDamage is related to the area damage. When the parameter is enabled, the

damage will be applied fully. When it is disabled, the inflicted damage value will drop
depending on the distance the projectile hit location.
DamageRadius is related to the area damage. The value is in cm.
DamageType is an option for damage type. This class sets up impulse and damage
values for destructible objects. Click here for more details
HitLoudness - is the loudness of the projectile hit. It does not influence the actual sound
volume. It is a technical parameter for AI.
CustomSurfaceTypeEffects. Specify here additional effects upon hit or replace default
effects for a particular weapon type. For example, a rocket would require an explosion, a
decal for the blast crater, and a corresponding sound. Here you can set up the effect for
any surface type present in the project (SurfaceType).

Projectile settings:

UseBulletProjectile is a type of the projectile. When the parameter is enabled, the
projectile will have a visual representation and follow a predetermined path. When
disabled, the projectile will hit the target momentarily.
CollisionBulletScale is a multiplier of the projectile collider (size of the projectile)
BulletSpeed is a velocity value of the projectile
BulletMesh is a 3d model of the projectile.
BulletGravityScale is a gravity multiplier for the projectile. The bigger the value, the fast
the projectile will fall.
RicochetCount is how many type the projectile can ricochet from a surface.
RicochetAngle is an angle value at which the ricochet is possible.
RicochetVelocityCost is how many percentages of the velocity value the projectile loses

https://api.unrealengine.com/INT/API/Runtime/Engine/GameFramework/UDamageType/index.html
https://docs.unrealengine.com/en-us/Engine/Physics/PhysicalMaterials/HowTo/AddSurfaceType

upon a ricochet. The range is between 0 and 1.
RicochetDamageCost is how many percentages of the damage value the projectile loses
upon a ricochet. The range is between 0 and 1.
BulletLifeTime is a maximum lifetime of the projectile in seconds (for optimization needs).

Animation settings for a character with a firearm:

CharacterAnimationType is an animation type for the character with the current weapon.
2H is when the character uses the firearm as a two-handed weapon, 1H is when the
character uses the firearm as a one-handed weapon.
AnimationReload is a reload animation for the character with the current weapon.
AnimationShootBlendpace is a shooting animation for the character with the current
weapon.
IKWhenShoot. Whether to use IK for the left hand when shooting. Since we have the
shotgun and a movable pump, we enable this parameter.
AnimationShootEnemyStand is a shooting animation when standing for the AI.

Visual settings for firearm:

WeaponMesh is a 3d model of the firearm.
HudImage is an icon of the weapon for HUD.
HudWeaponName is a name of the weapon for HUD.
RelativeTransformHand are relative coordinates of firearm location with respect to the
character’s hand.
RelativeTransformHolster are relative coordinates of firearm location with respect to the
weapon holster.
Muzzle Particle is the firearm firing effect.
Shoot Sound is a sound of the firearm firing.
Empty Sound is a sound of the firearm trigger clicking when the firearm is out of ammo.
Reload Sound is a sound of the firearm reloading.
Animation Shoot is an animation of the firearm firing.

Animation Empty is an animation of the firearm out of ammo.
Animation Reload is an animation of the firearm reloading.
DelaySpawnShell is a delay of the shell ejection. Since the shotgun shell does not
appear instantly, we specify some delay value.
Shell is for the shell ejection effect
Shell Life Time is a life-time of the shell.
ShellHitSound is a sound of the shell hit.
ShellEndSound is a sound of the last hit of the shall.

Spread settings of firearm:

Recoil_Min is the minimum (initial at the first shot) multiplier of recoil (camera shaking).
 Recoil_Max is the maximum multiplier of recoil (camera shaking). The higher is the
value, the more pronounced is the recoil effect during continuous shooting.
 SpreadingCone_Min is the minimum (initial at the first shot) cone of bullet spread. It
determines maximum accuracy of the weapon. The lower the value, the more accurate is
the weapon.
 SpreadingCone_Max is the maximum cone of bullet spread. The higher is the value,
the higher is the bullet spread of the weapon during continuous shooting.
 Spreading_Increase sets the bullet spread increase rate with each shot fired. The
higher is the value, the faster the weapon reaches the maximum bullet spread condition.
 Spreading_Decrease_Time sets the bullet spread decrease rate per second. In other
words, how fast the weapon restores in accuracy.
 CameraShakeClass sets a class for camera shaking. You may use the default one
and increase or decrease the shaking with parameters Recoil_Min and Recoil_Max.

Ammo settings:

AmmoType is a bullet type. More details in the description below. In short, what bullet
type the current weapon uses.
Ammo_ClipSize is the maximum clip size for the weapon.
Ammo_InClip sets the initial amount of bullets in the clip.
ReloadTime is the reload time (specified for the animation).

Rate of fire settings:

Bullet_Min is the minimum amount of projectiles in a shot.
Bullet_Max is the maximum amount of projectiles in a shot.
RandomNumBullets controls random number of projectiles fired from the value
Bullet_Min to the set value for Bullet_Max.
ShootingMode sets weapon fire mode. Single Fire is a single round per trigger pull fire
mode. AutoFire is automatic fire.
ShotsPerSecond is the maximum amount of shots per second.
ShootLoudness is the loudness of the gunshot. It does not influence the actual sound
volume. This is a technical parameter for the AI. As an example, we added a firearm with
a suppressor, when the gunshot loudness is minimum and the enemy does not react.

Clip ejection settings:

ClipMesh is a 3d model for the clip.
Sound Clip Hit is a sound of the ejected clip hit.
LifeTime is a life time of the clip.
ImpusleStrength is an impulse force driving the ejection of the clip (the direction is set
with the socket Socket_Clip in the weapon).
ClipDropTime is a time-delay before the clip ejection (specified for the animation).

This is it, our weapon has been added into the game and has its own settings. In order to
test the weapon by adding it to the character, use following nodes from the example for
the level blueprint. Note, if you add the weapon as soon as the game starts (BeginPlay),

then add a time-delay for the initialization of the system.

A little further below, we will consider how to add a weapon as an item and how to to
switch it with the help of “WeaponManager”.

Melee Weapon:
By default, the melee weapon is used by the character when he does not aim, which
allows one to combine close quarter combat with ranged weapon. The melee weapons
work just like firearms. To add a melee weapon, open the pawn “Character_Pawn” and
select the component WeaponStorage. You will see its settings on the right. Proceed to
the list of melee weapons “Weapon Melee List”. The weapon type “Unarmed” is the
basic weapon which is added by default and used when you are unarmed with a melee
weapon or when you take a weapon of the character.
To add a melee weapon, click + button which is opposite WeaponMeleeList.

Give a name to the new weapon. Let’s consider the weapon settings:

WeaponName is a technical name of the weapon. Use the same name you use to name
the new index in the array. In this example, it is Knife.
WeaponMeshForItem is a 3d model of the weapon an item. It is used when you drop the
weapon on the ground with the help of WeaponManager
RelativeTransformForItem is a relative location of the item.
HudImage is an icon for the weapon.
HudWeaponName is a name of the weapon for HUD.
Attacks is a list of attack types with the weapon. It is expanded by clicking upon + which
is across Attacks.
1Hand is an animation of the strike when a one-handed weapon is used.
2Hand is an animation of the strike when a two-handed weapon is used.
Unarmed is an animation of the strike when no weapon is used.
DamageStruct - Сis a structure which contains damage parameter. It is possible to
assign several damage values for a single strike for a combo, for instance.
DelayForDealDamage is a time-delay in seconds before inflicting damage. Note, if you
have several damage values, then the following delay value calculated relative to the
previous one.
Damage is a weapon damage value.
DamageAnim is a name for the enemy animation when it gets hit. For instance, a
character can fall or fly in a particular direction. In this case, set this animation for the
enemy and give it a name. Each enemy can have its own reaction for this strike.
ImpulseStrength is an impulse value for the strike on physical objects.
ImpulseForCarMultiply is a percentage of base impulse applied to the car. The value is in
range between 0 and 1.
Distance is a distance in cm at which the damage will be applied.
HitLoudness is the loudness of the hit for the AI.
DelayForInterrupt is a time-delay after which an attack can be interrupted.
HideWeapon. Whether to hide firearm when attacking.
ItemInHand is a structure of parameters to display an item in hand.
ItemMesh is a 3d model of the weapon.
SocketName is a socket to which the weapon will be attached. By default, there are two
sockets for the left and the right hand:Socket_Item_LHand and Socket_Item_RHand
respectively.
Transform is a weapon location relative to the socket.
SoundAttack is a sound of the attack.

This is it, our weapon has been added into the game and has its own settings. In order to
test the weapon by adding it to the character, use following nodes from the example for
the level blueprint. Note, if you add the weapon as soon as the game starts (BeginPlay),
then add a time-delay for the initialization of the system.

Inventory and picking up items

Inventory is for storing various items which the character picks up. It is presented as the
component “BP_Inventory” and it contains the logic for different items. By default, the
inventory class supports the following types of items:
Weapon is a firearm. When one picks up such items, the inventory executes the logic for
adding a weapon in “WeaponStorage” for the pawn.
WeaponMelee is a melee weapon. When one picks up such items, the inventory
executes the logic for adding a weapon in “WeaponStorage” for the pawn.
Ammo is an ammunition. Firearms use ammo right from the inventory. For each weapon
type, a particular ammo type to use must be specified. By default, there are 3 ammo
types used in the inventory:
HG_Ammo is ammo for a handgun and semi-automatic handgun.
AR_Ammo is ammo for an assault rifle.
SG_Ammo is ammo for a shotgun.
You can add any amount of ammo types. For that, select the component “Inventory” in
the character’s pawn and proceed to the corresponding tab settings “Ammo”.

And the last type of items in the inventory is:
QuestItem. This item can be anything, e.g. either a resource for crafting of anything or
door key, etc.

Let’s consider all item types in practice.
The class for picking up items BP_PickupItem is for interaction between the character
and items. It works like this:

Let’s consider an item for a firearm. You can directly place the item in the scene and set
it up there (since the functionality of the item to be picked up allows one to completely
create a weapon without the “WeaponStorage” component), but, in this case, you will
need to either copy the item or use it just once. I recommend to create a child item class
and set it up for multi use, since it will be easier to add it into the scene via blueprint.
For that, click RMB on BP_PickupItem and choose “Create Child Blueprint Class”
next.

In the project, there are already templates available for child classes of Items in the
project (weapons, ammo, gas canister, and so on...)

Open the newly created item class and find “Class Defaults”, and from there proceed to
the settings block “ItemSettings”. We will use a shotgun as an example for the item.

Active. Whether the item is active (whether it can be picked up). Since we need to pick
up the shotgun, we leave the property active (true). This functionality can be useful when
there is no need to pick up the item, for instance, when the item is behind a glass
cabinet. While the cabinet is locked, the parameter Active must be false.
Use IKLocation. Whether to use IK placements for hands on the item.
Move To Item. Whether the character will be moving towards the item. Since we will pick
up the shotgun from a table, we leave the property active (true).
Item Distance is for guidance of the animation. The picking up of a two-handed weapon
was animated under the condition that the character was 78 cm away from the item.
Number Of Items is the amount of items. There is no need to specify it in this example,
since we only have a single weapon. However, if you create an item for the ammo, then
you need to specify its amount.

ItemType is an item type in the inventory. Since our item is a weapon, we choose
“Weapon” type.
ItemStaticMesh sets the visual representation of the item as a static mesh. Since our
shotgun is a skeletal mesh, we leave the property empty.
ItemSkeletalMesh sets the visual representation of the item as a skeletal mesh. Our
shotgun is a skeletal mesh, so choose the shotgun model.
Once. Whether the item is picked up one time only. It is so in our case. For example, this
might be useful for ammo crates, because one can pick up ammo clips from it several
times.
Text Location is a local coordinates for placement of a pop-up text.
Text is a message displayed as a pop-up text for an item when the character approaches
it.
ItemImage is an icon for the item when it is picked up and passed to the inventory. By
default, it is used for the ammo.
PickUpAnimType is an animation type for the character when he picks up the item. The
animation for picking up items can be set up in the component “Interaction” in the pawn.

Settings stack “Item Weapon”
With the help of these settings, you can choose whether the weapon will be held in
hands (TakeWeaponInHands) or it will be immediately moved in WeaponManager. Since
we are going to use special animation to pick up the shotgun from the table, we specify
that, yes, the character will hold the weapon in his hands.
The parameter “CustomWeapon” allows one to create a unique weapon from the item
without adding it to the list “Weapon List” in “WeaponStorage” component. Below is the
structure for weapon settings. The settings are described above.

Settings stack “Item Settings Custom Animation”
These settings are to replace animation for basic item pick up. Since we have an
animation to pick up the shotgun from the table, we use it.
Delay Item Pickup determines the time delay between the moment an item pick up starts
and the moment the logic is executed in the inventory (the shotgun appears in hands).
Delay for Can interrupt Pickup determines the amount of time since an item pick up has
begun, within which it is possible to interrupt the interaction.

Now our item-shotgun is ready, just place it in the scene and pick it up with the character.

Items with additional logic.
Likewise, you can create completely unique items. In the project, there are examples of
such items: a bulletproof vest and a gas mask.
As it is described above, create a new item and specify necessary settings. Then, move
to the event graph and attach for the event “BeginPlay” a dispatcher “PickupBegin”.

Later, this event will be triggered in the moment when the item pick up just starts. For the
bulletproof vest, these are various effects and character’s health buff.

You can create other items, for instance, a med-kit would look like this:

The item references the health component of the character and it triggers an event of full
health restoration, The interface “Get Components” is created for a quick access to
character’s components.

Additional events in the inventory
There are several functions available by default to work with the inventory. If you need to

execute logic not from the pawn, you can access the inventory and other components via
the interface “Get Components”.

Add Quest Item adds a quest item in the inventory. Specify name and amount.
Get Quest Item is a request about the availability of the quest item in the inventory. For
instance, if there is a key in the inventory, you will be able to open a door or use it
elsewhere.
Add Ammo adds specified ammo type.
Remove Quest Item removes an item or its certain amount from the inventory.

Danger zones
In the project, there is a class to assist you in creating danger zones for the characters.
For example, these are gas chambers, fire regions and so on.
Let’s consider an example of gas corridor from the level “ZombieCity”, where the danger
zone deals damage to the character if he or she does not have a gas mask.

To create a danger zone, simply drag class BP_DamageVolume into the scene and
adjust its bounds to necessary size.
Settings:
Active. Whether the danger zone is active. It will deal damage if it is active.
Damage - Сis the amount of damage that will be applied to the character with a certain

time interval.
DamageRate is a time interval in seconds, after which the damage will be dealt.
OnlyPlayer. When the damage will be applied to the character only.
PlayerDoes’tGetDamage.The damage will be inflicted upon everyone except the player.
DamageType is a type of damage. Based on this type, you can make additional logic, for
instance, you can create damage type “Fire” and trigger the on-fire effect for the
characters.

Settings “Protective Item”
UseProtectiveItem. Whether using a protective item from this danger zone.
ProtectiveItemName is a name of the protective item. The danger zone will look
specifically for an item with this name in the inventory of the character.

 Artificial Intelligence - Enemies
The capabilities of the Artificial Intelligence (AI) have been greatly expanded in the 3rd
update. There is the base parent enemy class “EnemyCharacter_Pawn” in the project .
All other child classes inherit from this class as types of enemies. By default, there are 3
types of enemies available in the project: a soldier, a zombie, and a cyber-zombie.

Let’s consider how to set up AI for a new enemy. Make a child class from the class
“EnemyCharacter_Pawn” and open it. At first, we will determine the visual
representation. Select Mesh component and choose a character’s model. Also, you can
add additional meshes or other components, for example, enemies type “Zombie” have
additional meshes, which split a character into 3 parts. The parts are picked up randomly,
so the zombies do not look the same.

Next, we set up animation for our new enemy. For that, open
“EnemyCharacter_AnimBP” and find tab “Animation” in the list of variables.
You can replace the current animation of the character by selecting different structures of
animation.

Make all necessary changes of the enemy looks and proceed to its settings. First of all,
configure its basic parameters.

 Enemy parameters
Data tables are used in the project for the convenience of filling in and storing data regarding
characters behavior in combat. They are located as shown in figure below:

Expand “Data_AI_BaseParam”

To create a new version of base parameter settings, click upon + and key-in name of
parameters for our new enemy.

RunSpeed is a running speed of the character.
WalkSpeed is a walking speed of the character.
PursuitDistance is a distance within which the character will continue pursuing the target
during combat.
Health is a base health value for the character.
HealthRecoveryValue is an amount of health the character can restore. Specify 0 if the

character needs to fully restore his health.
HealthRecoveryTime is a time interval after which the character’s health gets restored
after taking damage. Specify 0 if the character does not need to restore his health.
HearingTheshold is a hearing distance for the character.
SightRadius is a seeing distance for the character.
TimeForDestroyAfterDeath is a time-interval after which the character will be removed
after death (for optimization). If you specify 0 then the character will not be deleted.

After we are done with the base character’s settings, we proceed to next settings. If your
character can use ranged weapons (which include all sort of throwing, shooting and
such), then you need to specify behavior settings for long range combat.

Open table “Data_AI_RangeParam”, add new settings, and give them a name (for
convenience, it is better to use the same name you used in base settings).

ShootDistance is a distance to the target at which the enemy can engage in long range
combat.
AimWalkSpeed is a character’s walking speed during long range combat.
RunSpeed is a character’s running speed during combat state.
PrimaryFiringAccuracyMultiply is an accuracy multiplier for the primary weapon based on
its base settings.
SecondaryFiringAccuracyMultiply is an accuracy multiplier for the secondary weapon
based on its base settings.

After you are done with base settings for long range combat, let’s proceed to adjust
behavior settings for long range combat.

Expand table “Data_AI_RangeBehavior”, add new settings, and give it a name. This
table contains settings for enemy behavior during long range combat.

TimeToChooseBegaviorWhenNotSeeTarget is a time after which the character resumes
patrolling or begins searching for target location last known to him, if the target is not in
sight.
Chance_ToStand is a probability to fight without changing the position (15%).
StandTime is an amount of time the character will remain in the same position if it is
Chance_ToStand.
Chance_ToStrafe is a probability for the character to move sideways or strafe when
shooting.
StrafeTime is a time duration of moving sideways.
Min_DelayForChangeStrafeDirection is a minimum time-interval, after which the
character changes the direction of his or her sideway movements.
Max_DelayForChangeStrafeDirection is a maximum time-interval, after which the
character changes the direction of his or her sideway movements.
Chance_CheckLatestKnownTargetLocation is a probability for the character to search
the last known target location if the target is not in sight.
AcceptableDistanceToLocation is a distance at which the character will go check the last
known location of the target.
TimeForCheckingLocation is a time duration of the search for the target at its last known
location.

The next step is to arm our new enemy. These can be both weapons for ranged combat
and melee combat. Open our newly created enemy and proceed to component
“EnemyWeaponStorage”.

Weapon is added to enemies based on the same principles it is added to the player,
except a melee weapon. The moments of applying damage are specified in the
animation of the enemy’s attack. Note, here you add all the weapons, that can be used
by this enemy.

With the help of notify “EnemyAttack”.
After you have added all possible weapons to the enemy, choose a weapon he will
appear within the level. You can always change these parameters when a enemy
spawns or select it in the scene and move to settings in tab “Details”. To choose a
default weapon in this class, select the root component in the list of components and, on
the right, find category “Weapon”.

By default, in the project, enemies can use two ranged weapons and a melee weapon. In
this category, specify a default weapon for this enemy as well as its ammo type. As soon
as the enemy is out of ammo, he will switch to melee combat.

Additional parameters of an enemy
Also, let’s consider additional enemy parameters you can configure by default.

Behavior categories:

In these categories, settings names from data tables must be specified (you have
specified the settings themselves above). Also, in categories marked “Custom”, you can
specify the settings directly without the use of tables.

Patrolling category:

Patrol Movement. Whether the character will do patrolling of the area initially.
Patrol Points are key points for patrolling route.
Loop. Whether the character goes on patrolling upon reaching the last point.
Revert. If the parameter is enabled, then, when the enemy resumes patrolling, he returns
in the first point of the route through points he has already passed.
PointDelay determines the amount of time it takes for the character to reach a route
point.
PatrolAfterCombat. Whether the character resumes patrolling as soon as he is out of
combat.

Voice settings:

In this category, you can set up the sound of the enemy’s voice, i.e. growling when in idle
state like a zombie, sound response to taking damage, dying sound, and sounds of
searching the location for the target. You can create voice types right away. For instance,
Soldier would suffice to all people, so simply specify Soldier in the parameter VoiceType.

AI Group category

Enemies can have both several types of enemies and allies. In this category, specify to
which group the enemy is related and what groups are hostile to him.

Weak Spots category

Specify here weak spots on the enemy which increase damage dealt when he is getting
hit there. By default, it is needed for headshots. Also, you can use this functionality to
create, for instance, bosses with weak spots.
UseWeakSpots. Whether the character has weak spots.
Bone for Weap Spots is a list of bones which are weak spots for the enemy.
Weak Spot Damage is an amount of inflicted damage when weak spots are hit. When its
value is 0, it subtracts all enemy’s health value, which results in death.

Close quarter combat with enemies
Enemies can receive damage from melee weapons. Also, the player can take down or
execute an enemy with synchronized animations with the help of “Takedown”
functionality.

Expand category “CloseCombat”:

Melee Damage Anim сontains a set of animations for receiving damage. By default, there
is only one animation added for each enemy type. The type of animation when striking is
specified in player’s melee weapon. Specify name, type, and animation itself.

Takedown Victim Map are settings for enemy takedown (Takedown). In this group,
specify takedowns available for this enemy type.
AnimationVictim is a target (enemy) animation during the takedown.
Distance is a relative distance between characters (the attacker and the target) during
the takedown.
DelayForDeath is a time-delay after which the target dies.
DelayForDropWeapon is a time-delay after which the target drops its weapon.

Effects contains effects (particles) which will be played during the takedown. You can
specified unlimited number of effects.
DelayForEffect is a time-delay after which the effect starts playing.
Effect is a type of the effect (particle).
SocketName is a location of the effect.
ParticleRotation is a rotation of the effect.
HitSounds is an array for playable voice sounds when receiving damage. The sounds
themselves are to be specified in category “SoundVoice”.
DeathSounds is an array of playable dying sounds. The sounds themselves are to be
specified in category “SoundVoice”.
.
Takedown Names are supported by this enemy takedowns specified above.

This is how takedowns are set up for enemies. By default, the takedown condition is
when one gets right near the enemy. The conditions are set in function
“GetTakedownType” and here is how it looks.

Any takedown is picked from the list “Takedown Names”, but, if the target is equipped
with a knife, then a takedown with a knife is selected. In order to change the conditions
for the current player, rewrite the function in the following way:

Press the button “Override” in the list of functions and find function“Get Takedown Type”
there.

Open the function and this is what you will see:

Node “Parent:Get Takedown Type” accounts for basic conditions (described above) set
by the parent class. You can add any conditions of your own. For instance, to execute an
enemy only when he has less than 50% health remaining.

Leave the return variable “Takedown Name” of the function empty and then the enemy
will be impossible to kill.
It concerns only settings for the enemy. Now we configure takedown settings for the
player. For that, proceed to the player’s pawn and select component “Interaction”, then
find category “CloseCombat”.

AttackerTakedownMap. By analogy with the target, this array contains all settings of the
attacker for takedowns.
You must use the same name for attacker’s takedown as you used in the settings for the
target.
AttackerAnimation is an attacker’s takedown animation.
DelayForInterrupt is a time-delay after which the takedown can be interrupted.
DelayForEndTakedown is an end time of the takedown.
DelayForStartCameraAnimation is when the camera animation starts.
DelayForStartCameraAnimation is when the camera animation is completed.

DelayForMakeNoise is a time moment when the takedown creates noise for the AI
(nearby AI agents can hear it).
CameraLocation is a camera location for animation. During the takedown, camera will be
moved there. These are sockets socketOffset in springarm.
CameraFov is a Field of view of the camera during animation.
СameraShakes is a shaking effect of the camera when hits land. You can specify any
amount of such shackings.
DelayForStart is a time duration of camera shaking (each following camera shaking will
use the delay relative to the previous one).
CameraShakeClass is a selection of camera shaking class.
ScaleShake is a multiplier the amplitude of camera shaking.
Sound is a sound of the takedown.
Loudness is a loudness value to be heard by the AI.
ItemInHand are settings for an item in hand (analogous settings for picking up items have
been described above).

This is how you can add different number of various takedowns including unique ones.

 How to add enemies into the scene via Blueprint
The project can also take care of spawning enemies in the scene with the help of node
“Spawn Actor From Class”:

Choose your enemy in parameter “class” and additional parameters of the enemy will
appear. Specify the location where the enemy should appear. Make sure to specify what

weapon he will use and what weapon is in his hands initially.

To add additional parameters, we recommend to use a child class of parent class
“EnemyCharacter_Pawn”. For example, a helmet is implemented for the enemy soldier
to save him from a single headshot (UseHelmet RandomHelmet?). Randomized look is
implemented for enemy type “Zombie”.

 Cars
There is a support for interaction with transportation means in the project.
Transportation means are implemented based on class “WheeledVehicle”.
Transportation means contain different modules and can be fine-tuned depending on the
gameplay.

 How to add a new car
For the start, create a new car as it is done here “Vehicle Art Setup”, but give bones
names as they are shown in figure:

We recommend you to export the “SyferJet” car and use bones with needed orientations
by positioning them in locations for wheels and other elements of your car.
These are bones that must have these names:
Bone_Body is a name of the body frame of the car.
Bone_W_ are names of car’s wheels.
Bone_W_Brake. Use the same name for brake pads (if there are any).
It does not matter how you name the rest of bones.

https://docs.unrealengine.com/en-US/Engine/Physics/Vehicles/VehicleUserGuide
https://docs.unrealengine.com/en-us/Engine/Physics/Vehicles/VehcileContentCreation

You must add these sockets:
Socket_W_.. are sockets for wheels.
Socket_DriverIn_LD is a place from which the character begins to open the left door.
Socket_DriverIn_RD is a place from which the character begins to open the right door.
Socket_RefuelPos is a place from where the character will refuel the car.

The next step is to add colliders in the physical asset (phat) for the car. Colliders must be
rather simple in analogy with the existing car:

Also add 2 static meshes for collisions with the top and with the bottom as it is done in
the existing car in the project:

This is needed to make sure the car can slip through small bumps and curbs. The bottom
collider is activated when the character steps out of the car.

Next, let’s add a new car and consider all possible settings. There are two transportation
means implemented in the project: basic one and combat one. A combat vehicle is a
child of the base car class and has advanced settings.

Create a child class of combat car class (Pawn_Car_Combat), so we can discuss all
available settings by default. If you do not need the car to engage in combat, just use
class “Pawn_Car” as a parent class. Give the child class name (in the example, it is

Pawn_NewCar) and open it. The first thing to do is to add your 3d model of the car by
selecting mesh component:

Also, you need to retarget “BP_CarAnimBP” for the skeleton of your car and specify it in
“AnimClass”. Note, without AnimBP the car will not be animated and work correctly.

Car settings.
Technical parameters of the car can be specified in component “VehicleMovement”. You
may learn about the parameters here: Vehicle
Open your new car and move to basic settings tab:

At first, set up parameters for interaction with the car.
Char Relative Pos Driver is a driver’s location relative to the car (driver seat)
Car Anim Struct is a data block where all animation of the car for the interaction with the
character is specified.
The next step is to specify all sounds for the car as well as the noise caused by it:

https://docs.unrealengine.com/en-us/Engine/Physics/Vehicles

Car modules
Let’s discuss all available modules for the car. For that, expand the category “Car
Modules”:

For the start, let us consider just basic modules:
CarLocked is whether the car will be locked. This parameter can be dynamically
modified.
Car Key Name is a key that can open this car. Just create an item (pickup item) with the
specified name, and, if it is in the inventory, the car can be unlocked.

UseFuel.If the module is enabled, the car will consume fuel. When the fuel tank is empty,
the car will stall. The fuel settings are in component “Fuel”.

Max Fuel is the maximum amount of fuel.
Waste of Duel Per Time is the fuel consumption rate.
Waste Time is a time interval after which the fuel is consumed.
Current Fuel is the current amount of fuel in the tank.

Also, you can create various items to refuel your car. They are specified in basic settings

in category “Refuel”:

Fuel Items are items that can refuel this car. The item name must coincide with the name
of the item in the inventory.
FuelPercent is an amount in percent of fuel this items restores in the fuel tank.
ActorEffect is a class that contains various effects for refueling. By default, it has an
animated fuel canister with sounds and physics.

Use Car Decor is a module for car’s appearance. It comprises settings for aerography
and car’s paint color. The settings are specified in component “CarDecor”:

Material Index is a material index on your car responsible for the car’s paint color.
Dynamic Material is a material that contains the paint of the car.
Use Aerography. Whether to use aerography.
Aerography Texture is a texture for the aeropraphy. By default, several textures have
been added for the aerography as examples.
Base Color is a color of the car. It is used when the aerography parameter is disabled.

Use Nitro. This module is for boost of the car. All settings are in component “Nitro”:

Nitro Power is a boost power.
Max Nitro is the maximum amount of nitro.
Nitro is the current amount of nitro.
Nitro Spend Value is the nitro consumption rate every 0.05 second.
Nitro Recovery Value is an amount of nitro that gets replenished (when 0, it replenishes
the nitro fully)
Nitro Recovery Time is a replenish time for nitro.
Delay Time For Recovery Nitro is a time delay before the replenish begins.
Min Percent Nitro for Start is the minimum amount of nitro needed in order for the boost
to work.
Max Boost Speed is the maximum boost speed in km/h.
All effects for Nitro boost are specified in category Effects.

Use Impulse System is a combat module responsible for the impulse system. It can be
tuned in component “ImpulseSystem”:

Charging Settings (Settings for the recharging of the impulse):
Impulse Charge Per Time is an amount of charge per an interval of time.
Power Time is a time-interval after which the impulse gets recharged.
Cool Down Time is a cooldown time for the system.
Impulse Settings:
Relative Location is a location for the impulse relative to the car.
Do Full Damage whether to deal damage fully within the radius of effect.
Impulse Damage is the damage value caused by the impulse.
Damage Type is a type of damage (in the class, the force of physical impulse is specified
as well).
Min Pulse Threshold is an amount of charge in percent needed for the impulse to work.
Impulse Radius min is the minimum radius of the impulse relative to the charge.
Impulse Radius Max is the maximum radius of the impulse relative to the charge.
Min Jump Threshold is an amount of charge in percent needed for jump to work.
Car Jump Impulse Min is the minimum jump strength relative to the charge.
Car Jump Impulse Max is the maximum jump strength relative to the charge.
Jump Vector is a direction of the jump.
In category “Effects”, all effects for the impulse system including its look can be specified.

Use Gravity Engines is a module for gravitational drivers needed to rotate the car in air.
By default, these drivers are activated by pressing the hand break in air. The rotation can

be amplified by activating nitro boost. All settings are in component “Gravity Engines”:

Gravity Engines Settings (Basic settings for drivers):
Bone Name for Force is a name of the bone which will be affected by the drivers.
Engine Power is a power of the drivers.
Engine Power with Nitro is a power of drivers when nitro is used.
Power Time is a working time of drivers before they overheat.
Cooldown is a cooldown time.

Drivers’ particles, their locations, and their sounds are specified in category “Effects”.

Use Weapons is a combat module for the weaponry. By default, combat vehicles can
use two weapons at the same time: the left one and the right one. The weapon is based
on the same logic and character’s weapon and it uses same components: “Weapon
Storage”, “Weapon”, “Inventory” (for ammo).
First step is to move to component “Weapon Storage” and set up all available weapon for
this transportation mean. By default, there are two weapon types available: a mini-gun
and a rocket-launcher.

After the weapons are added, add necessary ammo types in component Inventory:

The following step is to place created weapons on the car. This can be done by
specifying default names of weaponry in category Weapon in parameters Default Equip
Left Weapon and Default Equip Right Weapon. Additional animations can be specified in
this category as well, for instance, a reloading animation for a flexible ammo belt and
such:

This is the second way to add weapons and ammo. Use following nodes to add weapons
and ammo:

Note, the car uses all added weapons and switches between them upon pressing buttons
1 and 2. In other words, if you wish to add two mini-guns on the car, you need to add two
weapons with the name Minigun. By default, in order to drop a weapon, press and hold 1
or 2.

Combat vehicles support parameters for zoom (Zooming). It is activated when the
weapon is put forward.
Move to basic settings in category Zoom:

Zoom Speed is a zoom speed in seconds.
Zoom Fov is a field-of-view when zooming in.
Zoom Spring Arm Location is a location of the spring arm when zooming in.
Zoom Spring Socket Offset is a camera position relative to the spring arm when zooming
in.

You can activate/deactivate modules in real time with the help of the function in category
“CarModules”:

Component CarLights. The component is needed to set up car headlights and signals
(reverse gear, turn signals, brake). The first thing is to prepare textures (masks) for your
car. The masks for headlights must be in the following textures and channels:
1. The mask for the front headlights must be in the blue channel of the material mask
(RMEA).
A separate texture is devised for other signals. (By default, it is T_Corpus_Emissive_M).
2. The mask for the break signal must be in the red channel.
3. The mask for the left turn signal must be in the green channel.
4. The mask for the right turn signal must be in the blue channel.
5. The mask for the reverse gear signal must be in the alpha channel.

You can open material “M_SJ_Body” and check all the channels there:

The front headlights of the car support 3 regimes of lighting:
Turned off
Low beam (dipped headlights)
High beam

Proceed to the car signal settings. Select component “Car lights”.

Choose your material in category “Material” and its reference index to models.
Front headlights are adjusted in category “Front Lights Settings”.
Dipped Headlights Em is the glowing strength of dipped headlights.
High Beam Headlights Em is the glowing strength of high beam headlights.
Dipped Headlights is the brightness of dipped headlights.
High Beam Headlights is the brightness of high beam headlights.
Dipped Headlights Radius is the light range for dipped headlights.
High Beam Headlights Radius is the light range for high mean headlights.
Light Color is a color of headlights lighting.

The category “Lights Color” is to adjust the lighting of other signals.
The category “Sounds” is to specify the sound to switch between headlights regimes.
The category “Brake Lights Em” is to adjust the lighting strength of braking signal.
The category “Turn Signals Settings” is to adjust signals for turn lights.
The category “ReverseLightSett” is to adjust the lighting strength of reverse gear.

Additionally, the car contains “Health” component by default. When the health is
depleted, the car stalls. A special function “DeathEvent” has been added to be
overridden. When you override the function, you can add any death events for the car,
for instance, an explosion.

An ignition key button (ctrl) has been envisaged in the car. This can be useful when one
needs to save the gasoline or in order to make sure the car does not attract enemies with
noise.

Basic car controls:

Save and load the game.
Since there were many questions about the saving of the character. The project adds a
class of saving the game, which preserves the weapon, inventory and health of the
character.

This class is used to save variables in more detail here - SaveGame.
This class uses the save slot "PlayerParam", in this slot the player's parameters are
saved.

In the player's pawn, there are events in the "SaveGameComp" block. The save events
refer to the class "BP_Savegame" and save the current player parameters. The load
events receive the saved data from the "BP_Savegame" class and apply them to the
character. On the example of weapons - all weapons are reset and all stored weapons
and data are added to "BP_Savegame".

For the test, 6 and 7 are added in this block: 6 - saving, 7 - loading.

https://docs.unrealengine.com/en-us/Gameplay/SaveGame/Blueprints

With the help of this class, you can expand the saving system for example by preserving
the position of the player, the surrounding enemies, etc. To make it easier to navigate
around the code, there are a lot of comments.

Online Support Channel - Discord channel.
Thank you for attention.
With best regard Andrew (ZzGERTzZ).

https://discord.gg/Pc7GpGa

